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Summary The runoff–storage relationship for a runoff system in a steady-state is ana-
lyzed as an indicator of the buffering potential of rainfall-runoff responses. In this rela-
tionship, a large storage increase in response to a given runoff increase indicates high
buffering potential in the water balance equation. The evaluation method is applied to
a sloping permeable domain. A two-dimensional form of the Richards equation is used
to calculate runoff and storage. Macropore existence is represented by an enlargement
effect of hydraulic conductivity near saturation. The runoff–storage relationship is con-
trolled by the distribution of hydraulic quantities. The distribution of a pressure-head
value is approximately classified into the following three zones: the I zone with vertical
unsaturated flow, the U zone with unsaturated downslope flow, and the S zone with sat-
urated downslope flow. The runoff-buffering potential is systematically evaluated by
dependencies of the runoff–storage relationship on the classification of the pressure-head
distribution. The potential is generally high for soil with a high permeability, but rather
small in the range of low runoff rates where the S zone is not created. The macropore
effect causes the range of high buffering potential to shift to high runoff rates through
enlargement of the I zone. As a result, a moderate magnitude of the macropore effect
gives the maximum increase in storage in response to a given increase in runoff.
ª 2008 Elsevier B.V. All rights reserved.
Introduction

Although storm runoff is widely expected to decrease in for-
ests (e.g., Bradshaw et al., 2007), this process has not been
8 Elsevier B.V. All rights reserved
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supported by many hydrological studies (Calder, 1999) and
is a complex issue requiring further scientific examination.
Forests may help mitigate the rainfall-runoff response
through the formation of soil with large pores at a hillslope
scale (e.g., Grip et al., 2004; Hayashi et al., 2006). Specify-
ing the effect of each slope property on runoff mitigation
remains a basic and significant theme of forest hydrology.
.
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Generally, various slope properties such as surface geology,
soil properties, vegetation type, and topography influence
rainfall-runoff responses. Surface geology seems to be a
dominant factor. Shimizu (1980) demonstrated that moun-
tainous catchments consisting of sedimentary rock in Japan
had fluctuant runoff hydrographs, whereas catchments con-
sisting of igneous rock produced stable runoff hydrographs.
Holmes et al. (2002) also observed a strong dependency of
flow–duration curves on geology in the United Kingdom.
Such clear classifications by geology might be attributable
to basic differences in the underground structure control-
ling the allocation of rainwater to various flow paths within
the soil and permeable bedrock (Katsuyama et al., 2005; Ko-
sugi et al., 2006). Almost certainly, geology mainly controls
the runoff-buffering potential of mountainous catchments.
The effects of other catchment properties may be
secondary.

Nevertheless, assessing the effects of properties other
than geology is important from a practical viewpoint be-
cause watershed management often requires information
on the spatial distribution of runoff characteristics within
geologically similar mountain ranges. However, because
their effects are less dominant than those of geology, indi-
vidual properties often show overlapping or counteracting
influences on runoff responses, and specification of each
influence is challenging. For example, Montgomery and Die-
trich (2002) compared runoff responses in many small catch-
ments and concluded that topographic slope was not
sensitive to them. They reasoned that the insensitivity to
slope resulted from the fact that the response timescale
was controlled by vertical unsaturated flow instead of
downslope flow. This suggests that a topographic property
may produce different runoff-response tendencies for
unsaturated and saturated water flows. Another example
is the ambivalent effect of slope length on storm runoff re-
sponses. A study of storm runoff generation processes using
a trench at the bottoms of a hillslope found that although
only wetter downslope portions of a long slope generated
runoff responses at early stages of a storm event, higher
runoff peaks resulted from a shorter slope after large cumu-
lative rainfall (>100 mm; Tani, 1997). This suggests that a
long slope has higher runoff-buffering potential than a short
slope when the runoff contribution area is fixed as the en-
tire slope in the wettest condition. In drier conditions, how-
ever, the potential is lower in a long slope because its
wetter downslope condition is derived from a larger upslope
drainage area. This reflects the assumption of TOPMODEL
(Beven and Kirkby, 1979). Therefore, the subtler effects
of individual properties may be difficult to detect under typ-
ical field observations. This does not mean that field obser-
vation is worthless, but rather that researchers should
recognize that ambivalent results are common.

To evaluate the effects of each catchment property on
runoff responses, sensitivity analyses based on theoretical
approaches can compensate for insufficient findings from
field studies. Many findings have accumulated from theoret-
ical studies (e.g., Freeze, 1972; Zaslavski and Sinai, 1981).
For example, hillslope geometries such as convergent and
divergent shapes have been assessed using the Boussinesq
model based on hydraulic groundwater theory (Fan and
Bras, 1998; Troch et al., 2003). Ogden and Watts (2000) ana-
lyzed soil water movement in a two-dimensional domain
using the Richards equation. They showed that the time-
scale necessary to progress from an initial condition with
a low water table to a steady-state in response to constant
rainfall was controlled by the initial soil moisture conditions
as well as the drainage ability of groundwater. Duffy (1996)
analyzed the water balance equation of a runoff system and
demonstrated that the rainfall-runoff responses were
strongly controlled by dynamics of the saturated and unsat-
urated storage volumes. Kao et al. (2001) divided the unsat-
urated zone into two zones and emphasized the role of
unsaturated flow in the horizontal water movement in a
two-dimensional system. Lee (2007) showed that runoff
recession characteristics were based on the runoff–storage
relationship derived from saturated and unsaturated flows.
It is possible to develop sensitivity analyses from these re-
sults, and we can emphasize an importance of the interac-
tion between saturated and unsaturated zones. Note that
although the above studies did address the effects of catch-
ment properties on various kinds of indices characterizing
runoff processes, they did not explicitly evaluate runoff-
buffering potential.

Another problem in the assessment of runoff-buffering
properties is related to the macropores involved in water
movement in the soil. Many observational studies of hills-
lope hydrology have demonstrated that macropores have
considerable influence on runoff responses (e.g., Smettem
et al., 1991; Kitahara et al., 1994; Uchida et al., 2001).
Because some of these studies have provided evidence
for rapid downslope flow between the soil and bedrock
interface (Anderson et al., 1997; Tani, 1997), one of the
most important roles may be to lower the groundwater ta-
ble by rapid downslope flow (Tsutsumi et al., 2005). This
would influence the runoff-buffering potential, but such
relationships have not yet been examined from this
viewpoint.

Our purpose in this study is to propose a new method for
evaluating the runoff-buffering potential of a sloping per-
meable domain. First, we consider the water balance equa-
tion for the domain and explain how the runoff-buffering
potential can be basically represented by the runoff–stor-
age relationship derived from the spatial distributions of
hydraulic quantities in a steady-state. Next, three compo-
nents of water flow within a sloping permeable domain
are approximately classified to understand the dependence
of the runoff–storage relationship on the distribution of
hydraulic quantities. Finally, effects of soil physical proper-
ties and macropores on the buffering potential are evalu-
ated based on the runoff–storage relationship.
Theory and methods

Runoff–storage relationship as an indicator of
runoff-buffering potential

Runoff responses to rainfall in catchments are successfully
simulated by storage-based runoff models such as the Tank
model (Sugawara, 1995), TOPMODEL (Beven and Kirkby,
1979), and HYCYMODEL (Fukushima, 1988). The basic nature
of rainfall-runoff responses may originate from a water bal-
ance equation with a functional relationship of runoff and
storage
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dV

dt
¼ f � e� q; ð1Þ

V ¼ VðqÞ; ð2Þ

where q is the runoff rate, f is the rainfall rate, e is the
evapotranspiration rate, and V is the water storage of a run-
off system. Because the water balance equation (Eq. (1)) is
accepted for any runoff system, the runoff response to rain-
fall for a given system is characterized by a runoff–storage
relationship (Eq. (2)). Hence, it may be important to com-
prehensively parameterize the effects of runoff-system
properties using this relationship. A typical example of this
parameterization is the runoff–storage relationship of the
saturated zone storage in TOPMODEL, which is derived from
the spatial distribution of catchment topographic properties
(Beven and Kirkby, 1979). To evaluate the effects of catch-
ment properties on rainfall-runoff responses, previous stud-
ies have used various indicators such as the hydrograph
shape (Fan and Bras, 1998), time to steady-state (Ogden
and Watts, 2000), and flow duration curve (Shimizu, 1980;
Holmes et al., 2002). Compared with these indicators, the
runoff–storage relationship may have merit because it can
be regarded as an intrinsic property of a runoff system inde-
pendent of rainfall influences.

The evaluation method using the runoff–storage rela-
tionship can be applied to any runoff system, but one of
the simplest is a one-dimensional vertical infiltration pro-
cess in the permeable domain. Therefore, we first examine
the runoff–storage relationship in a vertical column in re-
sponse to rainfall with constant intensity. Because the rain-
fall rate equals vertical runoff flux in a steady-state, a
column with a large increase in water storage in response
to rainfall can be simply characterized as having high run-
off-buffering potential. However, while a deeper soil col-
umn clearly has high buffering potential, soil physical
properties also control that potential. Kosugi (1999) ana-
lyzed the influence of soil physical properties on the buffer-
ing potential using a one-dimensional form of the Richards
equation. He represented the buffering potential by the dif-
ference in the soil water storage between the hydrostatic
equilibrium before rainfall and the steady-state achieved
by a continuous rainfall supply at a constant intensity. He
then defined the difference as the water storage index
and used this index to evaluate buffering potential.

Kosugi’s (1999) approach can be applied to more com-
plex runoff systems. However, the assumption of hydro-
static equilibrium as the initial condition may be
inappropriate in general because runoff systems rarely
reach this state. A quasi-steady-state, in which the distribu-
tions of hydraulic quantities are in steady states, may be a
more acceptable condition for the runoff-recession stage
of a runoff system, as assumed in TOPMODEL (Beven and
Kirkby, 1979). Let us consider a cyclic process starting from
a steady-state and returning to it through another steady-
state to evaluate the runoff-buffering potential of a given
system (the top figure of Fig. 1). Assume a runoff system
A in a steady-state that yields a runoff rate per unit catch-
ment area qcA equal to the supplied constant rainfall rate f1.
If the supplied rainfall rate increases to a larger rate of f2 at
t = t1, qcA gradually increases and approaches f2. After en-
ough time, the system reaches another steady-state yielding
a runoff rate of qcA = f2. If the rainfall rate decreases to f1 at
t = t2 from the steady-state with qcA = f2, qcA gradually de-
creases and returns to f1 given sufficient time. The storage
increase DVA after the rainfall increase (f1! f2) indicated
by the hatched area is equal to the storage decrease after
the rainfall decrease (f2! f1), which is indicated by an-
other hatched area in the top figure of Fig. 1, because both
are calculated as the difference between total rainfall and
total runoff in the water balance equation. This result is re-
flected in the runoff–storage relationship shown in the bot-
tom part of Fig. 1. If we consider another runoff system B
with a larger volume of storage increase than system A in re-
sponse to the same increase in runoff rate from f1 to f2,
both the increase and the decrease in runoff rate have a lar-
ger delay as shown in the upper figure. Therefore, the run-
off-buffering potential can be represented by the functional
relationship between the runoff rate and steady-state
storage.

Fundamental equations

As the next simplest type of runoff system (Kosugi, 1999),
we can consider a sloping permeable domain with a con-
stant depth and homogeneous hydraulic properties. We
can apply a two-dimensional form of the Richards equation
for this domain, neglecting three-dimensional water move-
ment. The origin is placed at the upslope end of the surface
of the domain, and the x-axis and z-axis are positive in the
horizontal and downward directions, respectively (Fig. 2).
The water movement within the domain is described as
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The Richards equation is substituted for (3) and (4) into
(5) as
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where qx and qz are the water flow components in the x and
z directions, respectively, K is the hydraulic conductivity, w
is the pressure-head (the total water head of the matric
head in the unsaturated zone and the hydrostatic pres-
sure-head in the saturated zone), h is the volumetric water
content, t is time, and C( = dh/dw) is the water capacity
function defined as the gradient of the soil water retention
curve. A semi-infinite sloping domain is assumed, and the
upslope portion is used for the calculation here. Thus, we
analyze runoff discharge that flows downslope across the
vertical profile of the domain at horizontal distance (L) from
the upslope end. This assumption at the downslope end was
chosen to avoid local influences of specific boundary condi-
tions such as seepage faces. The local influences of the
boundary condition may be important, but our first priority
is evaluation of the pure effects of soil properties and mac-
ropores without local disturbances.

As the surface boundary condition, rainfall with a con-
stant intensity (f) was applied to the sloping domain. Over-
land flow occurs when the pressure reaches zero. Because
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Figure 1 Schematic of a water budget during a cyclic process in response to rainfall increases and decreases (upper) and the
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Figure 2 Schematic view of a sloping permeable domain for which a two-dimensional form of the Richards equation is applied.
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Hortonian overland flow (Horton, 1939) is unusual on for-
ested slopes, we only consider saturation overland flow
(Dunne and Black, 1970) in this study. The boundary condi-
tion along the slope surface is written as

qz ¼ f when w < 0 at z ¼ x tanx x P 0; ð7Þ

where x is the slope gradient. When w reaches zero, the
constant pressure condition (w = 0) is imposed to calculate
saturation overland flow. As other boundary conditions,
we assumed that no water flow occurs along the bottom
of the permeable domain or across the upslope end.
Accordingly,

qz cosx ¼ 0 at z ¼ x tanxþ D x P 0; ð8Þ
qx ¼ 0 at x ¼ 0 0 6 z 6 D; ð9Þ

where D is the depth of the permeable domain. The inte-
grated runoff discharge Qb across the vertical profile of
the domain at horizontal distance L from the upslope end
is downslope flow consisting of unsaturated and saturated
components, i.e., Qbu and Qbg (Fig. 2). These are defined as
Q bu ¼
Z L tanxþD�H

L tanx
qxjx¼Ldz; ð10Þ

Q bg ¼
Z L tanxþD

L tanxþD�H
qxjx¼Ldz; ð11Þ

Q b ¼ Q bu þ Q bg ¼
Z L tanxþD

L tanx
qxjx¼Ldz; ð12Þ

where H is the water depth at x = L. When saturation over-
land flow occurs, vertical flux across the surface becomes
smaller than rainfall intensity. Therefore, overland flow
(Qs) can be calculated by the following equation

Q s ¼ fL�
Z L

0

qzjz¼x tanxdx ð13Þ

Because we can assume that overland flow reaches the
downslope end much faster than downslope flow does, the
total runoff discharge passing across the downslope end
(Ql) is defined as

Q l ¼ Q b þ Q s: ð14Þ
A Crank–Nicholson finite difference scheme was used to
solve the fundamental Eq. (6) (Kosugi, 1997b).

Soil physical properties

To solve Eq. (6), we must know the functional relationships
of volumetric water content and hydraulic conductivity to
the matric head. Many equations have been proposed for
these relationships; we selected equations that would re-
duce the number of parameters involved in our examination
of runoff responses. We chose the physically based equation
sets of Kosugi (1996, 1997a,b) derived from log-normal soil
pore distributions. Kosugi (1996) defined soil water reten-
tion as

h ¼ hr þ ðhs � hrÞG
lnðw=wmÞ

r

� �
for w < 0;

h ¼ hs for w P 0; ð15Þ
where hs and hr are the saturated and residual volumetric
water contents, respectively, and G is the complementary
normal distribution function defined as

GðyÞ ¼ ð2pÞ�0:5
Z 1

y

exp
�u2

2

� �
du; ð16Þ

and wm is the median matric head corresponding to the
median pore radius; r is the standard deviation of the log-
transformed soil pore radius (r > 0), which characterizes
the width of the pore-size distribution. Kosugi (1997a) ex-
pressed saturated hydraulic conductivity as a function of
wm and r

Ks ¼ B
expðr2Þ

w2
m

: ð17Þ

The value of the constant B was empirically estimated to
be 100.4 cm3 s�1 from data sets of soil hydraulic properties
(Kosugi, 1997a). Kosugi combined that value with an equation
by Mualem (1976) for permeability reduction in the unsatu-
rated zone and gave the function of hydraulic conductivity as

K0 ¼ Ks G
lnðw=wmÞ

r

� �� �1=2
� G

lnðw=wmÞ
r

þ r

� �� �2

for w < 0;

K0 ¼ Ks for w P 0; ð18Þ

where K0 is the hydraulic conductivity given by Kosugi’s
equation; this is distinguished from the K used in our funda-
mental Eq. (6) which does include the effect of macropores
as described in section ‘Parameterization of the macropore
effect’. Because wm can be replaced by Ks using the rela-
tionship in Eq. (17), we can reduce the number of parame-
ters to four, namely, hs, hr, Ks, and r.

Parameterization of the macropore effect

Although many observational studies have demonstrated the
important roles of macropores in rainfall-runoff responses,
quantitative evaluation of macropore effects remains diffi-
cult mainly because of their heterogeneous spatial distribu-
tion (e.g., Sivapalan, 2003). To assess this effect, we
applied a modification of the hydraulic conductivity func-
tion near saturation. Mohanty et al. (1997) reported a
field-averaged function including the presence of preferen-
tial flow phenomena near saturation based on measure-
ments in an agricultural field. These data are only one
example, but this function may conveniently represent a
typical change in the flow-governing process between capil-
lary- and non-capillary-dominated phenomena. In addition,
Brooks et al. (2004) showed that hillslope-scale lateral sat-
urated hydraulic conductivity estimated by hydrometric
observations was much larger than that obtained from a soil
sample. Therefore, we offer the following approximation of
the hydraulic conductivity function based on Mohanty
et al.’s (1997) result:

KðwÞ ¼ K0ðwÞ for w < wt;

KðwÞ ¼ e
w�wt
�wt � K0ðwÞ for wt 6 w < 0;

KðwÞ ¼ e� K0ð0Þ ¼ e� Ks for w P 0; ð19Þ

where e is the ratio of the saturated hydraulic conductivity
considering the effect of macropores (K) to that calculated
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by Eq. (17) (Ks), and wt is the minimum pressure-head at
which the effect of the non-capillary-dominated process ap-
pears. The thin solid curve for Ks = 1 · 10�4 cm s�1, r = 0.8,
e = 50, and wt = �10 cm roughly agrees with the result mea-
sured by Mohanty et al. (1997) (Fig. 3). The thick solid curve
for e = 1 shows the relationship with no macropore effect.
We can regard our method for the macropore effect as
one of the parameterizations because the effect of macrop-
ores heterogeneously distributed within the domain is re-
placed by an enlargement effect of the hydraulic
conductivity given as a homogeneous parameter in the do-
main. The effect of macropores is controlled by e and wt,
but we assumed that the role of e is dominant and that wt

can be fixed at �10 cm for our calculations using the Rich-
ards equation.

Storage volume and control parameters

Integration of the solution of our fundamental Eq. (6) over a
permeable domain gives the storage volume V per unit slope
length as

V ¼ 1

L

Z L

0

Z X tanxþD

X tanx
hdzdx: ð20Þ

Because the runoff rate per unit slope length Ql/L is
equal to the supplied rainfall intensity f in a steady-state,
we can evaluate the runoff-buffering potential through
the runoff–storage relationship; the potential is large when
the increase in V is large for a given increase in f.

The parameters of our fundamental Eq. (6) that are
needed for evaluation of the runoff–storage relationship
are summarized as follows. Soil physical properties include
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Figure 3 An example of a soil hydraulic conductivity function
involving macropores. The dashed line is from measurements by
Mohanty et al. (1997). The solid lines are calculated by Eq. (19).
hs (saturated volumetric water content), hr (residual volu-
metric water content), Ks (saturated hydraulic conductiv-
ity), and r (standard deviation of the log-transformed soil
pore radius). Slope topographic properties are L (horizontal
length of the sloping domain), D (vertical depth of the do-
main), and x (slope gradient). The effect of macropores is
represented by e (the ratio of the saturated hydraulic con-
ductivity considering the effect of macropores to that cal-
culated by Eq. (19) and wt (the minimum pressure-head at
which the effect of the non-capillary-dominated process
appears).
Hydraulic characteristics

Distributions of pressure and hydraulic heads in a
steady-state

To evaluate the effects of soil physical properties and mac-
ropores on the runoff–storage relationship of a sloping per-
meable domain, we first focus on the spatial distributions of
hydraulic quantities as steady-state solutions of the Rich-
ards equation (Eq. (6)) because these quantities strictly con-
trol both the runoff and storage values. Therefore, it is
important to investigate the spatial distribution of hydraulic
quantities obtained as solutions in the steady-state. The
left-hand side of Fig. 4 shows three examples of solutions
from Eq. (6). The top and bottom figures in each example
demonstrate the contours of pressure-head (w) and hydrau-
lic head (u), respectively. In the three examples, the com-
mon parameters have values of hs = 0.6445, hr = 0.429,
Ks = 0.0025 cm s�1, r = 1.4, D = 1 m, L = 10 m, and x = 30�.
The values for hs and hr are typical for forest soils, as re-
ported by Kosugi (1999). A value for slope length smaller
than that under usual field conditions was selected for illus-
tration purposes. In each figure, a dotted line shows the
water table of saturated downslope flow.

Example (A) in Fig. 4 presents distributions of w and u in
response to a low f value (=0.045 mm h�1) as a runoff rate in
a long no-rainfall period. A saturated zone is not generated
within at least an L of 10 m, showing that the flow vector in
the unsaturated zone is directed downslope. This low runoff
rate suggests that only unsaturated downslope flow running
in the downslope direction plays a role in water movement
within the domain. Examples (B) and (C) illustrate runoff re-
sponses to a high f value (=4.5 mm h�1) in a period with long
continuous rainfall. Saturated downslope flow developed for
each. However, the effect of macropores in (C) is e = 10, and
the macropore effect is non-existent (e = 1) in (B). The
water table reaches the domain surface near the downslope
end in example (B), but it is very low even at the downslope
end in example (C) because of the large drainage capacity of
the saturated downslope flow derived from the tenfold lar-
ger effective saturated hydraulic conductivity in Eq. (19).
The contours of u in both examples seem to have two char-
acteristics. Contours in the saturated and unsaturated zones
near the groundwater table are characterized by lines per-
pendicular to the slope; in the upper unsaturated zone,
however, contours are horizontal, indicating downslope
flow vectors in the former but vertical flow in the latter.
The results of examples (B) and (C) for a high runoff rate
suggest that when the water table is low, rainwater with



Figure 4 Typical spatial distributions of w and u within a sloping domain under steady-state conditions. The left-hand figures are
calculated by the Richards equation, and the right-hand figures are approximated by Eqs. (21) and (22). (A and a) f = 0.045 mm h�1,
e = 1; (B and b) f = 4.5 mm h�1, e = 1 and (C and c) f = 4.5 mm h�1, e = 10.
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constant intensity infiltrates vertically within the upper
unsaturated zone but turns in the downslope direction near
and within the saturated zone.

Approximation of pressure- and hydraulic-head
distributions

The two kinds of distributions of hydraulic head yielding the
vertical and downslope flow vectors in Fig. 4 suggest that
steady-state pressure-head distributions can be approxi-
mated as simple schemes. This approximation makes it eas-
ier to understand the basic structure of the steady-state w
distribution given as seemingly complex solutions of the
Richards Eq. (6).

Based on the Appendix A, we can approximate the distri-
bution of w in the vertical cross-section as two zones. The
upper zone has a constant value of wf (Eq. (A9)), and the
profile in the lower zone follows Eq. (A4). Hence, we can
write the distribution of w in these two zones using the local
height measured from the domain bottom defined in Eq.
(A6) as

w ¼ wb � zc cos
2 x for zc 6

wb � wf

cos2 x
; ð21Þ

w ¼ wf for zc >
wb � wf

cos2 x
: ð22Þ

In our approximation of the steady-state pressure-head
distributions, we assume that the effect of macropores on
hydraulic conductivity can be neglected in the transition
zone near saturation (wt 6 w < 0 in Eq. (19)). This assump-
tion is introduced to simplify evaluation of the macropore
effect on the buffering potential. It holds that the non-cap-
illary effects by macropores appear only in the range of po-
sitive pressure-head. Therefore, the K � w function in our
assumption is simpler than that in Eq. (19) and can be given
as follows:
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KðwÞ ¼ K0ðwÞ for w < 0;

KðwÞ ¼ e� K0ð0Þ ¼ e� Ks for w P 0: ð23Þ

On the other hand, because we are considering a steady-
state, the total rate of downslope flow (Qx) draining through
the vertical cross-section of the domain located at a hori-
zontal distance (x) from the upslope end must equal the
integrated rainfall rate supplied to the domain surface be-
tween the upslope end and this cross-section. Accordingly,

Qx �
Z D

0

qxdzc ¼ fx: ð24Þ

As described above, within both the saturated zone and
part of the unsaturated zone where the flow stream lines
are approximately parallel to the slope (and the contours
of u are approximately perpendicular to the slope), Darcy’s
law allows the following approximation for the water flow
component to the x direction (qx)

qx ¼ KðwÞ sinx cosx: ð25Þ

Within the unsaturated zone where the flow stream lines
are approximated vertically, however, the flow can be di-
rected vertically, and the x-direction flow can be neglected
as

qx ¼ 0: ð26Þ

Fig. 5 presents schematic distributions of steady-state
pressure-head and flow directions (top figure) and the rela-
tionships of the bottom and surface pressure-head values to
the horizontal distance (x) (bottom figure). This shows that
in the downslope zone, where wb � wf P D cos2 x, the flow
direction is parallel to the slope within the entire vertical
Dcos2
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Figure 5 Schematic view of steady-state pressure-head distributio
head values to the horizontal distance (x) (lower). I, infiltration
downslope flow zone.
profile, but in the upslope zone where wb � wf < D cos2 x,
the flow direction is vertical in the upper portion of the ver-
tical profile. Therefore, in the downslope portion of the do-
main, Qx is given as the integration of qx from the bottom to
the surface:

Qx ¼ fx ¼
Z D

0

Kðw ¼ wb � zc cos
2 xÞ dzc

� sinx cosx for wb � wf > D cos2 x: ð27Þ

In the upslope portion, however, the integration is lim-
ited to the lower portion indicated by
zc 6 ðwb � wfÞ= cos2 x. Hence,

Qx ¼ fx ¼
Z ðwb�wf Þ= cos2 x

0

Kðw ¼ wb � zc cos
2 xÞ dzc

� sinx cosx for wb � wf 6 D cos2 x: ð28Þ

In both Eqs. (26) and (27), wb is the only unknown vari-
able against a given horizontal distance x. For this reason,
wb can be calculated inversely from x because the integral
in Eqs. (26) and (27) monotonically increases with wb.

Our approximation results (Eqs. (21) and (22)) for the
distributions of w and u in examples (A–C) in the left side
of Fig. 4 are, respectively, illustrated on the right side as
(a–c). Fig. 4 demonstrates good agreement between the
results of the Richards equation and the approximation for
each of the three examples. There is a slight difference
between the results of the two methods, resulting from
the w values around the border between the region where
stream lines are parallel to the slope and the region where
they are vertical. This transition zone between the two
regions exists in the results of the Richards equation, but
Overland flow 
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the two regions share a border in the corresponding approx-
imation. This disagreement can account for the angular u
contours for the approximations compared to the rounder
u contours of the Richards equation in examples (A–C) in
Fig. 4.

Classification of the pressure-head distribution

From the considerations above, we can classify three zones
of pressure-head distribution within the permeable domain
(Fig. 5): (1) the region where stream lines are vertical with
a uniform pressure-head of wf (Eq. (22)) constitutes the
infiltration zone (I zone), (2) the region where stream lines
are parallel to the slope with unsaturated pressure values
(w ¼ wb � zc cos2 x in Eq. (21) but wf < w < 0) is the unsatu-
rated downslope flow zone (U zone), and (3) the region
where stream lines are parallel to the slope with saturated
pressure values (w ¼ wb � zc cos2 x in Eq. (21) but w P 0) is
the saturated downslope flow zone (S zone).

The horizontal distances xiu, xus, and xso for the end point
of the I zone, the start point of S zone, and the start point of
saturation overland flow are defined as shown in Fig. 5 and
represented as follows. Because the total width of the U and
S zones described as (wb � wf)/cos

2x is just equal to D at
x = xiu, the end point of the I zone, substituting this relation
into Eq. (26) yields

fxiu ¼
Z D

0

Kðw ¼ wf þ ðD� zcÞ cos2 xÞ dzc sinx cosx: ð29Þ

Therefore,

xiu ¼
R wfþD cos2 x

wf
KðwÞdw tanx

f
: ð30Þ

On the other hand, the S zone is generated from xus in
which wb = 0 in Eq. (21), and elevation of the U zone at xus
ranges from zc = 0 to zc = �wf/cos

2x. However, the upper
boundary is restricted by the domain depth D. Hence,
substituting these conditions into Eqs. (28) and (27) yield
the following two equations, respectively:

fxus ¼
Z �wf= cos

2 x

0

Kðw ¼ �zc cos2 xÞ dzc sinx cosx

for wf P �D cos2 x; ð31Þ

fxus ¼
Z D

0

Kðw ¼ �zc cos2 xÞ dzc sinx cosx

for wf < �D cos2 x: ð32Þ

These equations indicate that the magnitude of the rela-
tionship between wf and �Dcos2x is important for our clas-
sification of the I and U zones. Therefore, a dimensionless
number a is defined here as

a ¼ �D cos2 x
wf

: ð33Þ

The respective values of xus for Eqs. (30) and (31) are
written reflecting the range of a as

xus ¼
R 0

wf
KðwÞdw tanx

f
for a P 1; ð34Þ

xus ¼
R 0

�D cos2 x KðwÞdw tanx

f
for a < 1: ð35Þ
Finally, saturation overland flow is generated from xso in
which the total downslope flow in the S zone is equal to Qx.
Similar to an example by Ogden and Watts (2000),

xso ¼
DeKs sinx cosx

f
: ð36Þ

When a = 1, wf + Dcos2x = 0 in Eq. (32). Accordingly, the
sequence of xiu and xus can be described from Eqs. (29),
(33), and (34) as

xus > xiu for a < 1; ð37Þ
xus ¼ xiu for a ¼ 1; ð38Þ
xus < xiu for a > 1: ð39Þ

Fig. 6 schematically illustrates the distributions of the I,
U, and S zones with the occurrence area of saturation over-
land flow for each category of these equations. This figure
indicates what zones appear at a given horizontal point.
For example, a trilaminar structure consisting of the I, U,
and S zones is only created between xus and xiu under the
condition that a > 1.

Fig. 7 shows relationships of xiu, xus, and xso for a semi-
infinite sloping domain to the steady-state runoff rate f.
The parameter values except for the slope length are the
same as those in Fig. 4, but e = 1 for Fig. 7a and b, while
e = 10 for Fig. 7c. The value of a calculated by Eq. (33) is also
plotted against f in Fig. 7d. Fig. 7a summarizes the compo-
sition of the I, U, and S zones and the occurrence area of
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saturation overland flow (represented by ‘O’) partitioned by
xiu, xus, and xs, but Fig. 7b and c focus on f � x relationships
for each e value. This comprehensively demonstrates what
zones appear at a given horizontal distance along the slope
under a steady-state when a runoff rate is provided.

In Fig. 7b and c for e = 1 and 10, the both start points of S
zone (xus) and saturation overland flow (xso) move upslope
with increasing f. However, the end point of the I zone
(xiu) shows a more complex response. When a decreases
with f (Fig. 7d), the uniform pressure value of wf in the I
zone decreases to large negative values (Eq. (32)). A sharp
decrease of K with wf (Eq. (18)) in the numerator of Eq.
(29) causes xiu to decrease in Fig. 7b regardless of the de-
crease in denominator f, and most of the domain (x P xiu)
is covered by the U zone (Fig. 7a). This pattern is included
in the range of Eq. (36) and is represented by the vertical
bar (A) in Fig. 7b. This coincides with example (A) in
Fig. 4 for L = 10 m and f = 0.045 mm h�1, where most of
the sloping domain is covered with the U zone except for
a short upslope portion with the I and U zones. When a in-
creases with f (Fig. 7d), wf increases, approaching zero
(Eq. (32)), and the S zone appears in the downslope portion
(x P xus). For a values larger than unity, a trilaminar struc-
ture with the I, U, and S zones forms between xus and xiu.
However, because wf þ D cos2 x > 0 for a > 1 (Eq. (32)),
K(w) reaches a constant value of Ks in the range of
0 6 w 6 wf þ D cos2 x. Hence, increase of the numerator
in Eq. (29) in response to increasing f becomes sluggish,
and xiu decreases in response to increase in the denominator
f (Fig. 7b). This balance between the numerator and the
denominator in Eq. (29) accounts for the non-monotonic
relationship of xiu with the maximum in Fig. 7b. A vertical
bar (B) in Fig. 7b coinciding with example (B) in Fig. 4 shows
the following compositions: a bilayer structure of the I and
U zones near the upslope end, a trilaminar structure of the
I, U, and S zones in the slope center, a bilayer structure of
the U and S zones, and a full saturation of the domain with
generation of saturation overland flow near the downslope
end.

Fig. 7c shows similar relationships to Fig. 7b but with a
macropore effect (e = 10). Large differences between the
figures are found in xiu for a > 1 and in xso. Because it is as-
sumed that the macropore effect only increases the water
flow rate in the saturated zone (Eq. (23)), the increase of
the S zone is reduced. The reduction of the S zone causes
an increase in xiu through decreasing the local height of
the boundary between the U and I zones although the start
point of the S zone xus is not changed. Reduction of S zone
also results in an increase in xso. A vertical bar (C) in Fig. 7c
coincides with example (C) in Fig. 4 and shows that the tri-
laminar structure covers the domain until the downslope
end because of the increase in xiu.

Partitioning a sloping permeable domain into I, U, and S
zones demonstrates that solutions of the Richards equation
under the steady-state are characterized by a simple struc-
ture that helps clarify which components play roles in the
buffering potential of runoff response.
Runoff-buffering potential

Runoff–storage relationship

Fig. 8 shows examples of the relationship between the total
water storage volume per unit horizontal length (V) within
the domain (Eq. (20)) and the runoff rate (f) in steady
states. The plots were calculated by the Richards equation,
Eq. (6), using common parameter values of hs = 0.6445,
hr = 0.429, r = 1.4, D = 1 m, L = 100 m, and x = 30�. These
values are the same as those in Fig. 4 of section ‘Distribu-
tions of pressure and hydraulic heads in a steady-state’ ex-
cept for a longer slope length representing the typical field
range. The three values of saturated hydraulic conductivity
(Ks) used here (0.025, 0.0025, and 0.00025 cm s�1) roughly
cover soil physical properties from sandy to clayey soils.
The macropore effect was not given for the three as e = 1,
but an additional result with a macropore effect of e = 10
was calculated for the case of Ks = 0.0025. The approxi-
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mated water storage volume per unit slope length (V) based
on the spatial distribution of pressure-head calculated by
Eqs. (21) and (22) in section ‘Approximation of pressure-
and hydraulic-head distributions’ is also shown in Fig. 8.
This figure demonstrates that the approximations satisfac-
torily explain the results of the Richards equation.

For all examples in Fig. 8, V increases with f, but the
relationship between V and f depends on the parameter val-
ues. The increase in V is large in the range of high f values
(f > 1 mm h�1) for the case of Ks = 0.025, but very small or
almost zero when Ks = 0.00025. For the case of
Ks = 0.0025, there is a large increase in V in the middle range
of f values, and the f range shifts to a higher range for the
case with macropore effects. The results indicate that the
runoff-buffering potential is generally high for soils with
high Ks values and that the existence of macropores contrib-
utes to shifting the f range with a high buffering potential to
a higher range.

Contribution of hydraulic characteristics to runoff-
buffering potential

The spatial distributions of hydraulic quantities such as
pressure-head w and volumetric water content h in response
to each of the runoff rates f control the partitioning of the
domain into the I, U, and S zones and the location of satu-
ration overland flow. The points xus, xiu, and xso are re-
garded as important indicators of partitioning as described
in section ‘Classification of the pressure-head distribution’.
Let us examine contributions of the I, U, and S zones to the
runoff-buffering potential using Fig. 9, which is the same as
Fig. 8 but focusing on the zone partitioning. Calculation re-
sults with e = 1 are referred to as C1, C2, and C3 for
Ks = 0.025, 0.0025, and 0.00025 cm s�1, respectively, and
the result for e = 10 and Ks = 0.0025 is referred to as C4.
As shown in Fig. 7a, the unsaturated I and U zones cover
the entire domain for xus > L, and saturation overland flow
occurs for xso < L, whereas the water table of saturated
downslope flow increases without overland flow in the range
from xus = L to xso = L. To check influences of the distribu-
tions of hydraulic quantities on runoff–storage relation-
ships, values of f giving the relationships of xus = L
(inversely calculated in Eqs. (33) and (34)) and xso = L (cal-
culated in Eq. (35)) are marked as fus and fso, respectively,
and the storage increases between them are represented by
Vs in Fig. 9. The additional subscript in each variable (fus,
fso, and Vs) indicates each calculation, C1–C4. Soil with
Ks = 0.025 cm s�1 (case C1 in Fig. 9) has a high wm value
(=�26.7 cm) in Eq. (17) and is characterized by low soil
water retention represented by sandy soil. This character
yields small volumetric water content in the U zone com-
pared to other soils because the distribution there is
approximated from the hydrostatic equilibrium distribution
as described in Eq. (A4). This small storage volume in the U
zone accounts for a large storage increase with the rise in
the water table in response to increasing f from fus to fso
(Fig. 9). Therefore, there is a large storage increase in
high-permeability soil in the range of f accompanied by a
rising water table. In contrast, the relatively large storage
volume in the U zone in each of the other cases (C2–C4)
yields a smaller storage increase in response to increasing
f. Certainly, lower wm values (i.e., �84.5 cm in cases C2
and C4, and �267 cm in case C3) characterize high storage
in the U and I zones even when the water table is low or
non-existent. In all four cases, storage increases are small
for f P fso because the downslope portion of the domain
is fully saturated. In the range of f < fus, where the S zone
disappears, the storage increase for soil with a low Ks is
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larger than that for soil with a high Ks. This indicates that
soil with a low permeability has a relatively large storage in-
crease in the range of the low runoff rate where the S zone
is not created.

In case C4 with a macropore effect (e = 10), the storage
increase is similar to that in case C2 without the macropore
effect, but the occurrence of saturation overland flow is
drastically shifted to a higher runoff range. Thus, macrop-
ores functioned to reserve the buffering potential for higher
runoff ranges and to reduce saturation overland flow. De-
tails in macropore effects on the buffering potential are
continuously discussed in the next section.
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Figure 10 Relationships of the storage volume in a unit
horizontal length (V) to the steady-state runoff rate (f) for
various macropore effects (e = 1, 10, 100, and 1000) for
Ks = 0.0025 cm s�1. A thick gray line indicates the f–Dhf
relationship calculated by Eq. (39).
Relationship between macropore effects and soil-
hydraulic properties

A previous study by Kosugi (1999) discussed the runoff-buf-
fering potential for a vertical column, introducing the con-
cept of water-storage capacity (see section ‘Runoff–
storage relationship as an indicator of runoff-buffering po-
tential’). This index was based on water storage in a stea-
dy-state in response to constant rainfall and was basically
derived from the pressure-head that can vertically transport
rainwater with a constant intensity by gravitational force.
Therefore, the near-surface zone of the column is covered
with a constant pressure-head wf as explained in section
‘Approximation of pressure- and hydraulic-head distribu-
tions’, and the reflected volumetric water content hf can
be obtained by substituting Eq. (A9) into the soil physical
properties of Eqs. (15) and (18) as

f ¼ K ¼ Ks
hf � hr

hs � hr

� �1=2
� G G�1

hf � hr

hs � hr

� �
þ r

� �� �2
ð40Þ

where G�1 is the inverse function of G (complementary nor-
mal distribution function) in Eq. (16). The h value at the bot-
tom of the permeable column is the saturated content hs
because the boundary condition w = 0 is used to permit
the free drainage from the bottom as given in Kosugi’s
(1999) study. Therefore, the water content h in the column
is distributed from hf near the surface to zero at the bot-
tom, and the water storage index can be calculated from
the vertical distribution of h. A further consideration is
added here. If the column depth D is very large, most of
the column is occupied by the water content of hf except
the near-bottom portion. Water storage asymptotically ap-
proaches Dhf with increasing D. When the column is infi-
nitely deep, the relationship of storage to the runoff rate,
which is equal to the rainfall intensity f at a steady-state,
is approximately reduced to the simple relationship f–Dhf
derived from an intrinsic hydraulic property, the K–h rela-
tionship in Eq. (39), independent of topographic properties.

This character of a vertical soil column is reflected in the
I zone of the two-dimensional domain that we analyzed.
Fig. 10 is similar to Figs. 8 and 9 but the f–V relationships
are for Ks = 0.0025 cm s�1 with various macropore effects
of e = 1, 10, 100, and 1000. Fig. 10 also shows the f–Dhf rela-
tionship calculated by Eq. (39). This figure clearly demon-
strates that the f–V relationship asymptotically
approaches the f–Dhf relationship with increasing e. This
tendency is explained by the high drainage capacity of the
S zone caused by macropore effects. When the capacity
becomes large with e increasing, the water table is sup-
pressed even for high f values. In addition to the low water
table of the S zone, the width of the U zone, given as �wf/
cos2x from the definition of the U zone in section ‘Classifi-
cation of the pressure-head distribution’, also becomes
small because wf rises to a near-zero value for high f values.
These lead to expansion of the I zone with constant values
of wf and hf. Therefore, the runoff-buffering potential fol-
lows the intrinsic hydraulic property of the K–h relationship
when the domain includes many macropores contributing to
the high drainage capacity of downslope flow in the S zone.
Some hydrometric observations on hillslopes have provided
evidence that w measured at shallow depths during rainfall
events reflects the intrinsic hydraulic property (Tani, 1997;
Torres et al., 1998).

To compare the buffering potential for each of the vari-
ous cases of macropore effects, we consider the storage in-
crease in response to a given increase in f. For example,
Fig. 10 illustrates an increase in f from 0.5 mm h�1 to
5 mm h�1. Because the fso value for e = 1 is 0.49 (Fig. 9), sat-
uration overland flow occurs near the downslope end even
for f = 0.5 mm h�1, and the storage increase responding to
the increase in f to 5 mm h�1 is suppressed by the limitation
of the depth of the permeable domain. Hence, the storage
increase in this case without macropore effects is smaller
than that in the case where e = 10. On the other hand, the
storage increases for cases with large macropore effects
of e = 100 and 1000 are also smaller than the increase for
e = 10 (Fig. 10). These cases with low buffering potentials
are caused by high drainage capacities of the S zone. There-
fore, there exists an e value giving the maximum storage in-
crease responding to a given runoff increase and that both
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low and high macropore effects result in low storage in-
creases. We can conclude that a moderate magnitude of
the macropore effect may provide a high runoff-buffering
potential.
Summary and concluding remarks

One of the most basic characteristics of runoff discharge is
whether the shape of a hydrograph is stable or flashy in re-
sponse to given rainfall and evapotranspiration conditions.
This characteristic is referred to as the runoff-buffering po-
tential. Because the runoff–storage relationship of a runoff
system generally controls this potential, we proposed an
assessment method involving investigation of the effects
of each system property on the runoff–storage relationship
under steady-state conditions. A one-dimensional vertical
column and a two-dimensional sloping domain were consid-
ered in the assessment of our method. That investigation
showed that the buffering potential of the vertical column
basically originated from intrinsic soil hydraulic properties
independent of topography. Although this character is only
strictly satisfied for a hypothetical infinitely deep column,
it reflects the sloping domain as a zone in which the flow
stream lines are vertical. This zone was called the I zone
and distinguished from the U and S zones in which flow
directions are parallel to the slope.

The runoff-buffering potential of the sloping domain was
assessed with the classification consisting of the I, U, and S
zones. A high potential represented by a large storage in-
crease in the runoff–storage relationship occurs for soil
with high permeability, particularly in the range of runoff
rate accompanied by a rising water table, although soil with
low permeability has a relatively large storage increase in
the range of low runoff rate without a saturated zone.
The existence of macropores shifts the range of large stor-
age increases to high runoff rates and contributes to the
reduction of saturation overland flow. As a result, there is
a moderate magnitude of the macropore effect giving the
maximum increase in storage in response to a given increase
in runoff.

This study has examined runoff-buffering potential by
analyzing the dependency of storage on the runoff rate
under steady-state conditions. While a steady-state is rare
under field conditions, this basic assumption is considered
necessary because the spatial-distribution characteristics
of hydraulic quantities obtained from the fundamental
equation have not yet been clarified for saturated and
unsaturated flow even under a steady-state. Seibert et al.
(2003) discussed the interaction between unsaturated and
saturated zones and classified it into cases in which these
zones are positively and negatively correlated. Duffy
(1996) considered water balance equations for both an
unsaturated flow system and a saturated flow system and re-
vealed that a competitive relation exists between unsatu-
rated and saturated storages. Such an interaction or a
competition between saturated and unsaturated zones can
be systematically represented by our classification of the
I, U, and S zones. The runoff discharge from the sloping do-
main is produced directly from the U and S zones, whereas
the rainfall as a surface boundary condition controls the I
zone. These steady-state characteristics may provide
insight into the dynamics of unsteady states as well. Such
an extended application of the classification will be con-
ducted in further studies.

The present paper has focused on introducing the meth-
odology and classifying the hydraulic quantities in steady
states. The effects of properties on runoff-buffering poten-
tial were only discussed based on some calculation exam-
ples. Evaluation of effects through sensitivity analyses will
be presented in future papers using dimensionless similarity
parameters.
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Appendix A. Derivation of approximated
pressure- and hydraulic-head distributions in a
steady-state

Fig. A1 illustrates an approximated distribution of u along a
vertical cross-section on a sloping domain. Generally,
groundwater flow within an aquifer on a steep slope, such
as our saturated downslope flow on a hillslope, is approxi-
mated by an extended Dupuit–Forchheimer assumption
whereby flow lines are parallel to the slope (Beven, 1981).
This indicates that the contours of u are perpendicular to
the slope. We can extend the assumption of parallel stream
lines from the saturated zone to the unsaturated zone
where u contours are still perpendicular to the slope in
the three examples in Fig. 4. Within the saturated or unsat-
urated zone, the vertical profiles of w and u can be approx-
imated in reference to the illustration at the right side of
Fig. A1. The values of w and u at two points, P1 and P2,
on a vertical cross-section are related with the assistance
of P3, the intersection of a line parallel to the slope through
P1, and a line perpendicular to the slope through P2 such
that

w2 � z2 ¼ u2 ¼ u3 ¼ w3 � z3 ¼ w1 � z3; ðA1Þ

where the suffix coincides with the point number. From Eq.
(A1), we can obtain the following relations for w and u be-
tween P1 and P2:

w2 ¼ w1� z3þ z2 ¼ w1þðz2� z1Þcos2 x; ðA2Þ
u2 ¼ w2� z2 ¼ w1þðz2� z1Þcos2 x� z2 ¼ u1�ðz2� z1Þsin2 x:

ðA3Þ

Therefore, the profiles of u and w along the vertical
cross-section are approximately written as

w ¼ wb � zc cos
2 x; ðA4Þ

u ¼ ub þ zc sin
2 x; ðA5Þ

where wb and ub are w and u at the bottom of the perme-
able domain, respectively, and zc is the local height mea-
sured upward from the domain bottom, which is defined as
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are the contours of w and u, respectively.
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zc ¼ X tanxþ D� z: ðA6Þ

Next, we approximate vertical w distributions in the zone
where slope-perpendicular u contours turn horizontal (see
the left side of Fig. A1). Consider a vertical cross-section
in the zone where u contours are horizontal, and draw a
horizontal line from each of the two points (P4 and P5) on
this cross-section. The intersections of these horizontal
lines and the upper-boundary contour of w, below which
the w contours are parallel to the slope, are marked as P6
and P7, respectively. P6 and P4 are located on a u contour,
and P7 and P5 are on another u contour such that

u6 ¼ u4; u7 ¼ u5: ðA7Þ

The elevations of P6 and P7 are the same as those of P4
and P5, respectively, and P6 and P7 are located on the con-
tour of w:

w5 ¼ w7 ¼ w6 ¼ w4: ðA8Þ

As a result, w has an approximately constant value within
the zone where u contours are horizontal.

Recall that we are considering the w distribution under a
steady-state derived from our surface boundary condition
with a constant rainfall intensity (f). Substituting qz = f into
Eq. (4) gives the following simple relationship because
ow=oz ¼ 0 within the zone of a constant pressure-head
value:

f ¼ KðwfÞ: ðA9Þ

This zone is covered with a constant wf value calculated
inversely from the rainfall intensity by the function in Eq.
(A9), consisting of Eqs. (17) and (18). The classic study by
Rubin and Steinhardt (1963) found such a distribution for
vertical infiltration from constant rainfall intensity. Our
result indicates that this pattern may be extended to the
portion of the unsaturated zone where u contours are hori-
zontal in the sloping domain. For example (A) in Fig. 4, wf is
�166 cm for f = 0.045 mm h�1, and for examples (B) and
(C), wf is �32.0 cm for f = 4.5 mm h�1. The distributions of
w within the upper unsaturated zone at the upslope portion
in example (B) and the upper unsaturated zone for the en-
tire slope in example (C) show good agreement for the wf

value of �32.0 cm in Fig. 4, whereas w within the upper
zone at the upslope portion in example (A) shows a slightly
higher value.
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